

MATH NEWS



Grade 5, Module 3, Topic C

# 5<sup>th</sup> Grade Math

Module 3: Addition and Subtraction of Fractions

## Math Parent Letter

This document is created to give parents and students an understanding of the math concepts found in Eureka Math (© 2013 Common Core, Inc.) that is also posted as the Engage New York material which is taught in the classroom. Grade 5 Module 3 of Eureka Math (Engage New York) covers Addition and Subtraction of Fractions. This newsletter will discuss Module 3, Topic C.

## Topic C: Making Like Units Numerically

#### Words to know:

- equivalence
- numericallysum
- difference

mixed number

- - improper fraction

## Things to Remember!!!

- Equivalence being equal, having the same value
- Numerically using numbers
- Sum the answer to an addition problem
- Difference the answer to a subtraction problem
- **Number Line** a line used to show placement of whole numbers, fractions, and mixed numbers
- Mixed Number a whole number plus a fraction smaller than 1, written without the + sign, e.g.  $5\frac{3}{4}$  means  $5 + \frac{3}{4}$
- Improper Fraction a fraction with the numerator equal to or greater than the denominator

# **OBJECTIVES OF TOPIC C**

- Add fractions to and subtract fractions from **whole numbers** using **equivalence** and the **number line** as strategies.
- Add fractions making like units **numerically.**
- Add fractions with **sums** greater than 2.
- Subtract fractions making like units numerically.
- Subtract fractions greater than or equal to 1.

# Focus Area- Topic C: Making Like Units

Problem 1: 2 +  $2\frac{1}{2} = 4\frac{1}{2}$ 

**Step 1**: Add the whole numbers. **Step 2**: Add the fraction.





**Step 1**: Subtract the whole numbers. **Step 2**: Subtract the fraction.



Problem 3:  $3 = \frac{3}{4} - \frac{1}{5} = \left(\frac{3x5}{4x5}\right) + \left(\frac{1x4}{5x4}\right)$ Step 1: Make like units  $\frac{15}{20} + \frac{4}{20} = \frac{19}{20}$ numerically.

Step 2: Add fractions.

| Problem 4:                                                                 | $\rightarrow$ $7\frac{5}{8} + 8\frac{2}{5}$                                                      |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| <b>Step 1</b> : Add the whole numbers.                                     | $=7+8+\frac{5}{8}+\frac{2}{5}$                                                                   |
| Step 2: Make like units numerically.                                       | $= 15 + \left(\frac{5 \times 5}{8 \times 5}\right) + \left(\frac{2 \times 8}{5 \times 8}\right)$ |
| Step 3: Add fractions.                                                     | $= 15 + \frac{25}{40} + \frac{16}{40}$                                                           |
| <b>Step 4</b> : If sum is an improper fraction, rename fraction as a mixed | $= 15 + \frac{41}{40}$                                                                           |
| number.<br><b>Step 5</b> : Add whole                                       | $= 15 + 1 + \frac{1}{40}$                                                                        |
| number to fraction.                                                        | $= 16 \frac{1}{40}$                                                                              |
| <b>Step 6</b> : Simplify <b>sum</b> if possible.                           | 10                                                                                               |

| Problem 5: | $5\frac{2}{3} - 2\frac{1}{2}$                                       |                                                                                               |
|------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|            | $= (5-2) + \frac{2}{3} - \frac{1}{2}$                               | (Step 1: Subtract the whole numbers.)                                                         |
|            | $= 3 + \frac{2}{3} - \frac{1}{2}$                                   |                                                                                               |
|            | $= (3-\frac{1}{2})+\frac{2}{3}$                                     | (Step 2: Subtract the second fraction from the whole number.)                                 |
|            | $= 2\frac{1}{2} + \frac{2}{3}$                                      | (Step 3: Make like units numerically.)                                                        |
|            | $= 2 + \left(\frac{1x3}{2x3}\right) + \left(\frac{2x2}{3x2}\right)$ |                                                                                               |
|            | $= 2 + \frac{3}{6} + \frac{4}{6}$                                   | (Step 4: Add the fractions.)                                                                  |
|            | $= 2 + \frac{7}{6}$                                                 | (Step 5: If sum of the fractions is an improper fraction, rename as a whole or mixed number.) |
|            | $=$ 2 + 1 + $\frac{1}{6}$                                           | (Step 6: Add fraction to whole numbers.)                                                      |
|            | $= 3\frac{1}{6}$                                                    | (Step 7: Simplify fraction if possible.)                                                      |

**Problem 6:** Mrs. Sanchez made  $7\frac{4}{5}$  gallons of punch for a party. If there were  $10\frac{1}{2}$  gallons in the mixture, how many gallons did she have left in the mixture?

$$10\frac{1}{2} - 7\frac{4}{5}$$

$$= (10 - 7) + \frac{1}{2} - \frac{4}{5}$$

$$= 3 + \frac{1}{2} - \frac{4}{5}$$

$$= (3 - \frac{4}{5}) + \frac{1}{2}$$

$$= 2\frac{1}{5} + \frac{1}{2}$$

$$= 2 + (\frac{1x^2}{5x^2}) + (\frac{1x^5}{2x^5})$$

$$= 2 + \frac{2}{10} + \frac{5}{10} = 2\frac{7}{10}$$
There are  $2\frac{7}{10}$  gallons of Mrs. Sanchez's punch mixture left.

**Problem 7:** Bryant has a goal to drink at least  $6\frac{1}{2}$  quarts of water during his day of training for the big marathon race. On his first break he drank  $1\frac{3}{4}$  quarts, and during his second break he had another  $2\frac{1}{5}$  quarts. How many quarts of water should Bryant drink on his last break of the day to reach his goal?

$$6\frac{1}{2} - \left(1\frac{3}{4} + 2\frac{1}{5}\right) = 6\frac{1}{2} - \left(3\frac{3}{4} + \frac{1}{5}\right) = 6\frac{1}{2} - \left(3 + \frac{3x5}{4x5} + \frac{1x4}{5x4}\right) = 6\frac{1}{2} - \left(3 + \frac{15}{20} + \frac{4}{20}\right)$$

$$6\frac{1}{2} - 3\frac{19}{20} = (6 - 3) + \frac{1}{2} - \frac{19}{20} = 3 + \frac{1}{2} - \frac{19}{20} = (3 - \frac{19}{20}) + \frac{1}{2}$$

$$2\frac{1}{20} + \frac{1}{2} = 2 + \left(\frac{1x2}{20x2}\right) + \left(\frac{1x20}{2x20}\right) = 2 + \frac{2}{40} + \frac{20}{40} = 2\frac{22}{40} = 2\frac{22+2}{40+2} = 2\frac{11}{20}$$
Or
$$2\frac{1}{20} + \frac{1}{2} = 2 + \left(\frac{1x1}{20x1}\right) + \left(\frac{1x10}{2x10}\right) = 2 + \frac{1}{20} + \frac{10}{20} = 2\frac{11}{20}$$
Bryant should drink  $2\frac{11}{20}$  quarts of water to reach his goal.

Students do **not** have to use the least common denominator. They are just expected to create common denominators. In the end the answers will be the same.

\*\*\*\* The strategy above is a possible approach. The student could have first added  $1\frac{3}{4} + 2\frac{1}{5}$ . Then take the sum and subtract from  $6\frac{1}{2}$ .