$5^{\text {th }}$ Grade Math

Module 2: Multi-Digit Whole Number and Decimal Fraction Operations

Math Parent Letter

This document is created to give parents and students a better understanding of the math concepts found in Eureka Math (© 2013 Common Core, Inc.) that is also posted as the Engage New York material which is taught in the classroom. Grade 5 Module 2 of Eureka Math (Engage New York) covers Multi-Digit Whole Number and Decimal Fraction Operations. This newsletter will discuss Module 2, Topic A.

Topic A. Mental Strategies for Multi-Digit Whole Number Multiplication

Words to know

- Product
- Associative Property
- Commutative Property
- Distributive Property

Things to Remember:

- Commutative Property - The word "commutative" comes from "commute" or "move around", so the Commutative Property is the one that refers to moving stuff around. Example: $2 \times 3=3 \times 2$
- Associative Property - The word "associative" comes from "associate" or "group"; the Associative Property is the rule that refers to grouping. Example: $5 \times 7 \times 2=(5 \times 2) \times 7$
- Distributive Property - The Distributive Property is easy to remember, if you recall that "multiplication distributes over addition". Example: $43 \times 6=(40 \times 6)+(3 \times 6)$
- Symbol for meaning 'about' - \approx
- When multiplying whole numbers by multiples of 10 you cannot always count zeros in the factors and end up with the correct product.
$5,000 \times 60 \neq 30,000$
(3 zeros) (1 zero) (4 zeros)

$$
\begin{aligned}
& 5,000 \quad \times \quad 60 \\
= & 5 \times 1,000 \times 6 \times 10 \\
= & (5 \times 6) \times(1,000 \times 10) \\
= & 30 \times 10,000=300,000
\end{aligned}
$$

OBJECTIVES OF TOPIC A

- Multiply multi-digit whole numbers and multiples of 10 using place value patterns and the distributive and associative properties.
- Estimate multi-digit products by rounding factors to a basic fact and using place value patterns.

Focus Area- Topic A

Module 2: Multi-Digit Whole Number and Decimal Fraction Operations
Find the product. Show your thinking
$6 \times 70 \quad 80 \times 50$
$=6 \times 7 \times 10 \quad=(8 \times 10) \times(5 \times 10)$
$=42 \times 10 \quad=(8 \times 5) \times(10 \times 10) \not$ - Associative $^{\text {Property }}$
$=420=40 \times 100$
$=4,000$
542×3
$=(500 \times 3)+(40 \times 3)+(2 \times 3) \longleftarrow{ }^{\text {Distributive }} \begin{gathered}\text { Property }\end{gathered}$
$=1,500+120+6$
= 1,626

Round the factors to estimate the products.
$867 \times 46 \approx 900 \times 50$
$7,231 \times 25 \approx 7,000 \times 30$
$=45,000$
$=210,000$

t $\boldsymbol{t} \boldsymbol{t} \boldsymbol{t} \boldsymbol{t} \boldsymbol{t} \boldsymbol{t} \boldsymbol{t}$

Determine if these equations are true or false. Defend your answer using your knowledge of place value and the commutative, associative and/or distributive property.

$$
\begin{aligned}
& 77 \times 30 \times 10=770 \times 3-\text { these equations are FALSE } \\
&(77 \times 10) \times 30=770 \times 3 \\
& \downarrow \\
& 770 \times 30 \neq 770 \times 3
\end{aligned}
$$

Example Problems and Answers
Laura wants to buy a new car. If the car payment each month is $\$ 367$ for 5 years, about how much will the car cost her after the five year?
$\$ 367$ is about $\$ 400$--- there are 12 months in a year

$$
\begin{aligned}
& \$ 400 \times 12 \\
= & (4 \times 100) \times 12 \\
= & (4 \times 12) \times 100 \\
= & 48 \times 100 \\
= & 4,800
\end{aligned}
$$

$$
\begin{aligned}
\text { For } 5 \text { years } & --\$ 4,800 \times 5 \\
& =(48 \times 100) \times 5 \\
& =48 \times 5 \times 100 \\
& =(40 \times 5)+(8 \times 5) \times 100 \\
& =(200+40) \times 100 \\
& =240 \times 100 \\
& =24,000
\end{aligned}
$$

The car will cost her about $\$ 24,000$.

Tickets to a baseball game are $\$ 23$ for an adult and $\$ 12$ for a student. If 37 adult tickets and 325 student tickets were bought, about how much money would it cost for everyone to attend the baseball game?
$\$ 23 \times 37$ adults $\approx \$ 20 \times 40=\$ 800$

$$
\begin{aligned}
\$ 12 \times 325 \text { children } \approx \$ 10 \times 300=\$ 3,000 \text { OR } & \$ 12 \times 300 \\
\$ 800+\$ 3,000=\$ 3,800 & =12 \times(3 \times 100) \\
& =(12 \times 3) \times 100 \\
& =36 \times 100 \\
& =3,600
\end{aligned}
$$

$$
\$ 800+\$ 3,600=\$ 4,200
$$

It will cost about $\$ 3,800$ for everyone to attend the game. Or It will cost about $\$ 4,200$ for everyone to attend the game.

